Basic information

Full name
major histocompatibility complex, class I, A
Ensembl
ENSG00000206503.13
Summary
HLA-A belongs to the HLA class I heavy chain paralogues. This class I molecule is a heterodimer consisting of a heavy chain and a light chain (beta-2 microglobulin). The heavy chain is anchored in the membrane. Class I molecules play a central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen so that they can be recognized by cytotoxic T cells. They are expressed in nearly all cells. The heavy chain is approximately 45 kDa and its gene contains 8 exons. Exon 1 encodes the leader peptide, exons 2 and 3 encode the alpha1 and alpha2 domains, which both bind the peptide, exon 4 encodes the alpha3 domain, exon 5 encodes the transmembrane region, and exons 6 and 7 encode the cytoplasmic tail. Polymorphisms within exon 2 and exon 3 are responsible for the peptide binding specificity of each class one molecule. Typing for these polymorphisms is routinely done for bone marrow and kidney transplantation. More than 6000 HLA-A alleles have been described. The HLA system plays an important role in the occurrence and outcome of infectious diseases, including those caused by the malaria parasite, the human immunodeficiency virus (HIV), and the severe acute respiratory syndrome coronavirus (SARS-CoV). The structural spike and the nucleocapsid proteins of the novel coronavirus SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), are reported to contain multiple Class I epitopes with predicted HLA restrictions. Individual HLA genetic variation may help explain different immune responses to a virus across a population.[provided by RefSeq, Aug 2020]
Annotation
Cancer driver (TSG) Ligand

Protein product

Phosphosites on the primary protein product
Loading...

Tumor and normal comparison

Signed p-values
Data type Meta P BRCA CCRCC COAD GBM HNSCC LSCC LUAD OV PDAC UCEC

* P-values are from Wilcoxon rank sum test and can be clicked to show the box plots. Positive values mean higher abundance in tumor. BRCA and GBM do not have normal samples.

mRNA expression at gene level
Protein expression

* Mild outlier: filled circle; Extreme outlier: empty circle.

Phenotype and mutation association

Manhattan plot summarizing associations of phenotypes and mutations across all cohorts and omics data types

* Data points of significant associations above and below the dotted lines can be hovered to show the phenotype.

Associations of the protein abundance of HLA-A with phenotypes and mutations

Signed p-values
Phenotype Meta P BRCA CCRCC COAD GBM HNSCC LSCC LUAD OV PDAC UCEC

* P-values could be from test for Spearman correlation, Wilcoxon rank sum test, Jonckheere-Terpstra trend test or Cox regression depending on the data type. P-values for individual cohorts can be clicked to show the data plots. The matrix icons in each row can be clicked to show a heatmap summary of associations across all cohorts and omics. The rows in the table can be expanded to show results from other omics.

Cis-association

Associations between omics data of HLA-A

* The numbers are Spearman correlation coefficients and can be clicked to show the scatter plots. The color and size of the circles correlate with the coefficients.

Trans-association

Associations of the protein abundance of HLA-A and the protein abundance of other genes

Signed p-values
Gene Meta P BRCA CCRCC COAD GBM HNSCC LSCC LUAD OV PDAC UCEC

* P-values are from test for Spearman correlation. P-values for individual cohorts can be clicked to show the data plots. The matrix icons in each row can be clicked to show a heatmap summary of associations across all cohorts and omics. The rows in the table can be expanded to show results from other omics.

Gene set enrichment analysis

Submit genes and the common logarithm of the p-values of their association with to WebGestalt.